A Comparison of Deep Neural Network Training Methods for Large Vocabulary Speech Recognition
نویسندگان
چکیده
The introduction of deep neural networks to acoustic modelling has brought significant improvements in speech recognition accuracy. However, this technology has huge computational costs, even when the algorithms are implemented on graphic processors. Hence, finding the right training algorithm that offers the best performance with the lowest training time is now an active area of research. Here, we compare three methods; namely, the unsupervised pre-training algorithm of Hinton et al., a supervised pre-training method that constructs the network layer-by-layer, and deep rectifier networks, which differ from standard nets in their activation function. We find that the three methods can achieve a similar recognition performance, but have quite different training times. Overall, for the large vocabulary speech recognition task we study here, deep rectifier networks offer the best tradeoff between accuracy and training time.
منابع مشابه
Speech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملDeep LSTM for Large Vocabulary Continuous Speech Recognition
Recurrent neural networks (RNNs), especially long shortterm memory (LSTM) RNNs, are effective network for sequential task like speech recognition. Deeper LSTM models perform well on large vocabulary continuous speech recognition, because of their impressive learning ability. However, it is more difficult to train a deeper network. We introduce a training framework with layer-wise training and e...
متن کاملEmbedding-Based Speaker Adaptive Training of Deep Neural Networks
An embedding-based speaker adaptive training (SAT) approach is proposed and investigated in this paper for deep neural network acoustic modeling. In this approach, speaker embedding vectors, which are a constant given a particular speaker, are mapped through a control network to layer-dependent elementwise affine transformations to canonicalize the internal feature representations at the output...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملSpoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting
Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013